List - IMolecule | List - IIBond enthalpy (kJ mol-1) |
---|---|
(A) HCl | (I) 435.8 |
(B) N2 | (II) 498 |
(C) H2 | (III) 946.0 |
(D) O2 | (IV) 431.0 |
Bond enthalpy is the energy required to break one mole of a particular bond in a gaseous substance.
A. HCl: The H-Cl bond enthalpy is approximately 431 kJ mol$^{-1}$ (slightly lower than HBr and higher than HF due to periodic trends down the halogen group). Thus, A-IV.
B. N$_2$: The N≡N triple bond is very strong, with a bond enthalpy of approximately 946 kJ mol$^{-1}$. Thus, B-III.
C. H$_2$: The H-H single bond has a bond enthalpy of approximately 436 kJ mol$^{-1}$. Thus, C-I.
D. O$_2$: The O=O double bond has a bond enthalpy of approximately 498 kJ mol$^{-1}$. Thus, D-II.
Therefore, the correct matching is A-IV, B-III, C-I, D-II.
Match the LIST-I with LIST-II:
Choose the correct answer from the options given below :
The number of molecules/ions that show linear geometry among the following is _____. SO₂, BeCl₂, CO₂, N₃⁻, NO₂, F₂O, XeF₂, NO₂⁺, I₃⁻, O₃
Given below are two statements: one is labelled as Assertion A and the other is labelled as Reason R.
Assertion A : The potential (V) at any axial point, at 2 m distance(r) from the centre of the dipole of dipole moment vector
\(\vec{P}\) of magnitude, 4 × 10-6 C m, is ± 9 × 103 V.
(Take \(\frac{1}{4\pi\epsilon_0}=9\times10^9\) SI units)
Reason R : \(V=±\frac{2P}{4\pi \epsilon_0r^2}\), where r is the distance of any axial point, situated at 2 m from the centre of the dipole.
In the light of the above statements, choose the correct answer from the options given below :
The output (Y) of the given logic gate is similar to the output of an/a :