For limits, quickly classify the indeterminate form: \(0/0, \infty/\infty, 0 \cdot \infty, \infty - \infty, 1^\infty, 0^0, \infty^0\).
For \(0/0\) or \(\infty/\infty\), use L'Hôpital's Rule or standard limits/series expansions.
For \(1^\infty, 0^0, \infty^0\), take the logarithm first to turn it into a \(0 \cdot \infty\) form, then rearrange for L'Hôpital's Rule.