Question:

Match LIST-I with LIST-II:\[\begin{array}{|c|l|l|} \hline \textbf{LIST-I (Flow parameter of a channel flow)} & & \textbf{LIST-II (Proportional to)} \\ \hline \text{A. Mean velocity in a Lacey regime channel} & & \text{IV. $Q^{2/3}$} \\ \hline \text{B. Mean velocity in a lined channel} & & \text{II. $S^{1/3}$} \\ \hline \text{C. Normal scour depth in an alluvial channel} & & \text{III. $Q^{1/2}$} \\ \hline \text{D. Wetted perimeter of a Lacey regime channel} & & \text{I. $S^{1/2}$} \\ \hline \end{array}\] where $S$ is slope of channel and $Q$ is discharge. Choose the most appropriate match from the options given below:

Show Hint

Remember: Lacey's regime equations link velocity to slope ($S^{1/2}$) and wetted perimeter to discharge ($Q^{2/3}$).
Updated On: Sep 24, 2025
  • A - I, B - II, C - III, D - IV
  • A - II, B - I, C - IV, D - III
  • A - I, B - I, C - II, D - III
  • A - III, B - I, C - II, D - IV
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation


Step 1: Recall relationships.
- (A) Mean velocity in Lacey regime channel $\propto S^{1/2} \Rightarrow$ I.
- (B) Mean velocity in lined channel $\propto S^{1/3} \Rightarrow$ II.
- (C) Normal scour depth in alluvial channel $\propto Q^{1/2} \Rightarrow$ III.
- (D) Wetted perimeter in Lacey's regime $\propto Q^{2/3} \Rightarrow$ IV.

Step 2: Match accordingly.
\[ A \to I, B \to II, C \to III, D \to IV \]

Step 3: Conclusion.
Thus, the correct match is option (1).

Was this answer helpful?
0
0

Top Questions on Open Channel Flow