Masses \( m \left(\frac{1}{3}\right)^N \) are placed at \( x = N \), for \( N = 2, 3, 4, \dots \). If the total mass is \( M \), then the center of mass of the system is:
Show Hint
Use weighted average: \( x_{\text{COM}} = \frac{\sum m_i x_i}{\sum m_i} \) and geometric series for infinite masses.
Let total mass \( M = \sum_{N=2}^{\infty} m \left( \frac{1}{3} \right)^N \),
Let numerator for center of mass be:
\[
\sum x_i m_i = \sum_{N=2}^{\infty} N \cdot m \left( \frac{1}{3} \right)^N
\]
\[
x_{\text{COM}} = \frac{\sum x_i m_i}{\sum m_i} = \frac{\sum N \left( \frac{1}{3} \right)^N}{\sum \left( \frac{1}{3} \right)^N}
\]
This ratio evaluates (after summing geometric series) to \( \frac{1}{6} \)