Step 1: Identify all the cut points on the 1-metre stick
The stick is marked at:
- Thirds: \( \frac{1}{3}, \frac{2}{3} \).
- Fifths: \( \frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5} \).
The combined set of marking points is:
\( 0, \frac{1}{5}, \frac{1}{3}, \frac{2}{5}, \frac{3}{5}, \frac{2}{3}, \frac{4}{5}, 1 \).
Step 2: Convert all values to a common denominator (15)
- \( \frac{1}{5} = \frac{3}{15} \)
- \( \frac{1}{3} = \frac{5}{15} \)
- \( \frac{2}{5} = \frac{6}{15} \)
- \( \frac{3}{5} = \frac{9}{15} \)
- \( \frac{2}{3} = \frac{10}{15} \)
- \( \frac{4}{5} = \frac{12}{15} \)
Step 3: Find the smallest segment
The stick is divided at points:
\( 0, \frac{3}{15}, \frac{5}{15}, \frac{6}{15}, \frac{9}{15}, \frac{10}{15}, \frac{12}{15}, 1 \).
The smallest segment length is the difference between consecutive values:
- \( \frac{5}{15} - \frac{3}{15} = \frac{2}{15} \)
- \( \frac{6}{15} - \frac{5}{15} = \frac{1}{15} \) (smallest)
- \( \frac{9}{15} - \frac{6}{15} = \frac{3}{15} \)
- ...
Final Conclusion:
The smallest piece has a length of \( \frac{1}{15} \), so the correct answer is (B) \( \frac{1}{15} \).