Magnetic fields at two points on the axis of a circular coil at a distance of 0.05 m and 0.2 m from the centre are in the ratio 8 : 1. The radius of coil is _____________
Two identical circular loops \(P\) and \(Q\) each of radius \(r\) are lying in parallel planes such that they have common axis. The current through \(P\) and \(Q\) are \(I\) and \(4I\) respectively in clockwise direction as seen from \(O\). The net magnetic field at \(O\) is: 
Find magnetic field at midpoint O. Rings have radius $R$ and direction of current is in opposite sense. 
Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.