Let $f$ be $a$ differentiable function defined on $\left[0, \frac{\pi}{2}\right]$ such that $f(x)>0;$ and $f(x)+\int\limits_0^x f(t) \sqrt{1-\left(\log _e f(t)\right)^2} d t=e, \forall x \in\left[0, \frac{\pi}{2}\right]$ Then $\left(6 \log _e f\left(\frac{\pi}{6}\right)\right)^2$ is equal to _______
A | B | C | D | Average |
---|---|---|---|---|
3 | 4 | 4 | ? | 4 |
3 | ? | 5 | ? | 4 |
? | 3 | 3 | ? | 4 |
? | ? | ? | ? | 4.25 |
4 | 4 | 4 | 4.25 |