Let \( z \) and \( w \) be two complex numbers such that \( \bar{z} + i\bar{w} = 0 \) and \( \text{Arg}(zw) = \pi \). Then \( \text{Arg}(z) = \)
Show Hint
Complex Argument Rules}
Use the identity \( \text{Arg}(ab) = \text{Arg}(a) + \text{Arg}(b) \).
The argument of \( i \) is \( \frac{\pi}{2} \).
Conjugation reverses the sign of the argument: \( \text{Arg}(\bar{z}) = -\text{Arg}(z) \).