Given values are:
- Freezing point of pure benzene, \(T_f^0 = 278.45 \, \text{K}\)
- Freezing point of solution, \(T_f = 277.82 \, \text{K}\)
- \(K_f\) for benzene = \(5.1 \, \text{K kg mol}^{-1}\)
- Van't Hoff factor, \(i = 0.5\)
Step 1: Calculate the freezing point depression (\(\Delta T_f\)):
\[
\Delta T_f = T_f^0 - T_f
\]
\[
= 278.45 \, \text{K} - 277.82 \, \text{K}
\]
\[
= 0.63 \, \text{K}
\]
Step 2: Use the freezing point depression formula to find the molality (\(m\)):
\[
m = \frac{\Delta T_f}{i \times K_f}
\]
\[
= \frac{0.63 \, \text{K}}{0.5 \times 5.1 \, \text{K kg mol}^{-1}}
\]
\[
= \frac{0.63}{2.55} \, \text{mol/kg}
\]
Step 3: Define molality in terms of solute mass:
\[
m = \frac{\text{moles of solute}}{\text{mass of solvent (in kg)}}
\]
Let \(x\) be the mass of benzoic acid in grams.
Moles of benzoic acid = \(\frac{x}{122}\) (Molar mass of benzoic acid = 122 g/mol).
Mass of solvent (benzene) = 50 g = 0.05 kg.
Substituting these values into the molality equation:
\[
m = \frac{x/122}{0.05} = \frac{x}{122 \times 0.05}
\]
Step 4: Solve for \(x\):
\[
\frac{x}{122 \times 0.05} = \frac{0.63}{2.55}
\]
\[
x = \frac{0.63}{2.55} \times 122 \times 0.05
\]
\[
x = \frac{0.63 \times 122 \times 0.05}{2.55}
\]
\[
x \approx 1.50666...
\]
Rounding to one decimal place, \(x \approx 1.5 \, \text{g}\).
Correct Answer: (2) 1.5