Step 1: Recall the formula for the partial correlation coefficient.
The partial correlation coefficient between two variables \( X_1 \) and \( X_2 \), given a third variable \( X_3 \), is given by:
\[
\rho_{X_1, X_2 | X_3} = \frac{{Cov}(X_1, X_2) - {Cov}(X_1, X_3) {Cov}(X_2, X_3)}{\sqrt{({Var}(X_1) - {Cov}(X_1, X_3)^2)({Var}(X_2) - {Cov}(X_2, X_3)^2)}}.
\]
Step 2: Identify the covariance matrix.
From the given covariance matrix, we have:
\[
{Cov}(X_1, X_2) = 0.4, \quad {Cov}(X_1, X_3) = 0, \quad {Cov}(X_2, X_3) = 0.6.
\]
The variances are:
\[
{Var}(X_1) = 1, \quad {Var}(X_2) = 1, \quad {Var}(X_3) = 1.
\]
Step 3: Compute the partial correlation.
Substituting the values into the formula for partial correlation:
\[
\rho_{X_1, X_2 | X_3} = \frac{0.4 - 0 \times 0.6}{\sqrt{(1 - 0^2)(1 - 0.6^2)}} = \frac{0.4}{\sqrt{(1)(1 - 0.36)}} = \frac{0.4}{\sqrt{0.64}} = \frac{0.4}{0.8} = 0.5.
\]
Thus, the partial correlation coefficient is \( \boxed{0.50} \).