Let \( X \) denote the number of hours a Class 12 student studies during a randomly selected school day. The probability that \( X \) can take the values \( x_i \), for an unknown constant \( k \):
\[ P(X = x_i) = \begin{cases} 0.1, & {if } x_i = 0, \\ kx_i, & {if } x_i = 1 { or } 2, \\ k(5 - x_i), & {if } x_i = 3 { or } 4. \end{cases} \]Step 1: The probability that the student studied for at most 2 hours is given by: \[ P(X \leq 2) = P(X = 0) + P(X = 1) + P(X = 2). \] Step 2: Substitute the given values: \[ P(X \leq 2) = 0.1 + k(1) + k(2). \] Step 3: Substitute \( k = 0.15 \): \[ P(X \leq 2) = 0.1 + 0.15(1) + 0.15(2). \] Step 4: Compute the value: \[ P(X \leq 2) = 0.1 + 0.15 + 0.3 = 0.55. \] Thus, the probability that the student studied for at most 2 hours is 0.55.
Step 1: The Poisson distribution formula is: \[ P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!}, \] where \( \lambda \) is the average rate of occurrence, \( k \) is the number of occurrences, and \( e \) is the base of the natural logarithm.
Step 2: Mean expectation (\( \lambda \)): The average number of floods in 10 years is \( \lambda = 2 \).
Step 3: Probability of 3 or fewer overflows (\( P(X \leq 3) \)): \[ P(X \leq 3) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3). \] Using the Poisson formula: - For \( P(X = 0) \): \[ P(X = 0) = \frac{2^0 e^{-2}}{0!} = \frac{1 \cdot 0.13534}{1} = 0.13534. \] - For \( P(X = 1) \): \[ P(X = 1) = \frac{2^1 e^{-2}}{1!} = \frac{2 \cdot 0.13534}{1} = 0.27068. \] - For \( P(X = 2) \): \[ P(X = 2) = \frac{2^2 e^{-2}}{2!} = \frac{4 \cdot 0.13534}{2} = 0.27068. \] - For \( P(X = 3) \): \[ P(X = 3) = \frac{2^3 e^{-2}}{3!} = \frac{8 \cdot 0.13534}{6} = 0.18045. \]
Step 4: Add the probabilities: \[ P(X \leq 3) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3). \] Substitute the values: \[ P(X \leq 3) = 0.13534 + 0.27068 + 0.27068 + 0.18045 = 0.85715. \]
Final Answers: - Mean expectation: \( \lambda = 2 \). - Probability of 3 or fewer overflows: \( P(X \leq 3) = 0.85715 \) or approximately \( 85.72\% \).
In number theory, it is often important to find factors of an integer \( N \). The number \( N \) has two trivial factors, namely 1 and \( N \). Any other factor, if it exists, is called a non-trivial factor of \( N \). Naresh has plotted a graph of some constraints (linear inequations) with points \( A(0, 50) \), \( B(20, 40) \), \( C(50, 100) \), \( D(0, 200) \), and \( E(100, 0) \). This graph is constructed using three non-trivial constraints and two trivial constraints. One of the non-trivial constraints is \( x + 2y \geq 100 \).
Based on the above information, answer the following questions:
On her birthday, Prema decides to donate some money to children of an orphanage home.
If there are 8 children less, everyone gets ₹ 10 more. However, if there are 16 children more, everyone gets ₹ 10 less. Let the number of children in the orphanage home be \( x \) and the amount to be donated to each child be \( y \).
Based on the above information, answer the following questions:
Find the effective rate which is equivalent to a normal rate of 10% p.a. compounded:
Given:
\[ (1.05)^2 = 1.1025, \quad (1.025)^4 = 1.1038. \]Fit a straight-line trend by the method of least squares for the following data:
\[ \begin{array}{|c|c|c|c|c|c|c|c|} \hline \textbf{Year} & 2004 & 2005 & 2006 & 2007 & 2008 & 2009 & 2010 \\ \hline \textbf{Profit (₹ 000)} & 114 & 130 & 126 & 144 & 138 & 156 & 164 \\ \hline \end{array} \]When observed over a long period of time, a time series data can predict trends that can forecast increase, decrease, or stagnation of a variable under consideration. The table below shows the sale of an item in a district during 1996–2001:
\[ \begin{array}{|c|c|c|c|c|c|c|} \hline \textbf{Year} & 1996 & 1997 & 1998 & 1999 & 2000 & 2001 \\ \hline \textbf{Sales (in lakh ₹)} & 6.5 & 5.3 & 4.3 & 6.1 & 5.6 & 7.8 \\ \hline \end{array} \]