Let \( X \) denote the number of hours a Class 12 student studies during a randomly selected school day. The probability that \( X \) can take the values \( x_i \), for an unknown constant \( k \):
\[ P(X = x_i) = \begin{cases} 0.1, & {if } x_i = 0, \\ kx_i, & {if } x_i = 1 { or } 2, \\ k(5 - x_i), & {if } x_i = 3 { or } 4. \end{cases} \]Step 1: The probability that the student studied for at most 2 hours is given by: \[ P(X \leq 2) = P(X = 0) + P(X = 1) + P(X = 2). \] Step 2: Substitute the given values: \[ P(X \leq 2) = 0.1 + k(1) + k(2). \] Step 3: Substitute \( k = 0.15 \): \[ P(X \leq 2) = 0.1 + 0.15(1) + 0.15(2). \] Step 4: Compute the value: \[ P(X \leq 2) = 0.1 + 0.15 + 0.3 = 0.55. \] Thus, the probability that the student studied for at most 2 hours is 0.55.
Step 1: The Poisson distribution formula is: \[ P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!}, \] where \( \lambda \) is the average rate of occurrence, \( k \) is the number of occurrences, and \( e \) is the base of the natural logarithm.
Step 2: Mean expectation (\( \lambda \)): The average number of floods in 10 years is \( \lambda = 2 \).
Step 3: Probability of 3 or fewer overflows (\( P(X \leq 3) \)): \[ P(X \leq 3) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3). \] Using the Poisson formula: - For \( P(X = 0) \): \[ P(X = 0) = \frac{2^0 e^{-2}}{0!} = \frac{1 \cdot 0.13534}{1} = 0.13534. \] - For \( P(X = 1) \): \[ P(X = 1) = \frac{2^1 e^{-2}}{1!} = \frac{2 \cdot 0.13534}{1} = 0.27068. \] - For \( P(X = 2) \): \[ P(X = 2) = \frac{2^2 e^{-2}}{2!} = \frac{4 \cdot 0.13534}{2} = 0.27068. \] - For \( P(X = 3) \): \[ P(X = 3) = \frac{2^3 e^{-2}}{3!} = \frac{8 \cdot 0.13534}{6} = 0.18045. \]
Step 4: Add the probabilities: \[ P(X \leq 3) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3). \] Substitute the values: \[ P(X \leq 3) = 0.13534 + 0.27068 + 0.27068 + 0.18045 = 0.85715. \]
Final Answers: - Mean expectation: \( \lambda = 2 \). - Probability of 3 or fewer overflows: \( P(X \leq 3) = 0.85715 \) or approximately \( 85.72\% \).
List-I | List-II |
(A) Absolute maximum value | (I) 3 |
(B) Absolute minimum value | (II) 0 |
(C) Point of maxima | (III) -5 |
(D) Point of minima | (IV) 4 |
In number theory, it is often important to find factors of an integer \( N \). The number \( N \) has two trivial factors, namely 1 and \( N \). Any other factor, if it exists, is called a non-trivial factor of \( N \). Naresh has plotted a graph of some constraints (linear inequations) with points \( A(0, 50) \), \( B(20, 40) \), \( C(50, 100) \), \( D(0, 200) \), and \( E(100, 0) \). This graph is constructed using three non-trivial constraints and two trivial constraints. One of the non-trivial constraints is \( x + 2y \geq 100 \).
Based on the above information, answer the following questions:
On her birthday, Prema decides to donate some money to children of an orphanage home.
If there are 8 children less, everyone gets ₹ 10 more. However, if there are 16 children more, everyone gets ₹ 10 less. Let the number of children in the orphanage home be \( x \) and the amount to be donated to each child be \( y \).
Based on the above information, answer the following questions:
A school is organizing a debate competition with participants as speakers and judges. $ S = \{S_1, S_2, S_3, S_4\} $ where $ S = \{S_1, S_2, S_3, S_4\} $ represents the set of speakers. The judges are represented by the set: $ J = \{J_1, J_2, J_3\} $ where $ J = \{J_1, J_2, J_3\} $ represents the set of judges. Each speaker can be assigned only one judge. Let $ R $ be a relation from set $ S $ to $ J $ defined as: $ R = \{(x, y) : \text{speaker } x \text{ is judged by judge } y, x \in S, y \in J\} $.