Step 1: Understanding the random variable \( X \).
The random variable \( X \) takes only two values, 1 and 2. Let the probability mass function of \( X \) be:
\[
P(X = 1) = p \quad \text{and} \quad P(X = 2) = 1 - p
\]
The expectation of \( X \), \( E[X] \), is given as \( \frac{10}{7} \). Using the formula for expectation:
\[
E[X] = 1 \cdot p + 2 \cdot (1 - p) = p + 2(1 - p) = 2 - p
\]
Given \( E[X] = \frac{10}{7} \), we have the equation:
\[
2 - p = \frac{10}{7}
\]
Solving for \( p \):
\[
p = 2 - \frac{10}{7} = \frac{14}{7} - \frac{10}{7} = \frac{4}{7}
\]
So, \( p = \frac{4}{7} \) and \( P(X = 1) = \frac{4}{7} \), and \( P(X = 2) = \frac{3}{7} \).
Step 2: Moment generating function of \( X \).
The moment generating function \( M_X(t) \) of \( X \) is defined as:
\[
M_X(t) = E[e^{tX}] = e^{t \cdot 1} \cdot P(X = 1) + e^{t \cdot 2} \cdot P(X = 2)
\]
Substituting the values for \( P(X = 1) \) and \( P(X = 2) \):
\[
M_X(t) = e^t \cdot \frac{4}{7} + e^{2t} \cdot \frac{3}{7}
\]
Step 3: Finding the fourth derivative of \( M_X(t) \).
To find the fourth derivative of \( M_X(t) \) at \( t = 0 \), we differentiate \( M_X(t) \) four times:
\[
M_X'(t) = \frac{4}{7} e^t + \frac{6}{7} e^{2t}
\]
\[
M_X''(t) = \frac{4}{7} e^t + \frac{12}{7} e^{2t}
\]
\[
M_X^{(3)}(t) = \frac{4}{7} e^t + \frac{24}{7} e^{2t}
\]
\[
M_X^{(4)}(t) = \frac{4}{7} e^t + \frac{48}{7} e^{2t}
\]
Now, evaluate \( M_X^{(4)}(t) \) at \( t = 0 \):
\[
M_X^{(4)}(0) = \frac{4}{7} e^0 + \frac{48}{7} e^0 = \frac{4}{7} + \frac{48}{7} = \frac{52}{7}
\]
Step 4: Conclusion.
The fourth derivative of \( M_X(t) \) evaluated at 0 is \( \frac{52}{7} \), hence the correct answer is \( \boxed{C} \).