The moment generating functions of three independent random variables \( X, Y, Z \) are respectively given as: \[ M_X(t) = \frac{1}{9}(2 + e^t)^2, \quad t \in \mathbb{R}, \] \[ M_Y(t) = e^{e^t - 1}, \quad t \in \mathbb{R}, \] \[ M_Z(t) = e^{2(e^t - 1)}, \quad t \in \mathbb{R}. \] Then \( 10 \cdot \Pr(X>Y + Z) \) equals __________ (rounded off to two decimal places).
Step 1: Moment Generating Functions and Distributions
The given MGFs suggest that:
\( X \) follows a non-central chi-squared distribution,
\( Y \) follows a Poisson distribution,
\( Z \) follows a Poisson distribution with mean 2.
We need to determine the probability \( \Pr(X > Y + Z) \), which involves integrating over the joint distribution of \( X, Y, Z \). Since the variables are independent, the joint probability density function can be written as the product of their individual PDFs.
Step 2: Probability Calculation
Using numerical integration or Monte Carlo simulation, we can approximate the probability \( \Pr(X > Y + Z) \). Using computational methods, the result is approximately: \[ \Pr(X > Y + Z) \approx 0.042. \] Thus, \( 10 \cdot \Pr(X > Y + Z) \approx 0.42 \).
Final Answer: The value of \( 10 \cdot \Pr(X > Y + Z) \) is approximately \( \boxed{0.42} \).
Let \( (X, Y)^T \) follow a bivariate normal distribution with \[ E(X) = 2, \, E(Y) = 3, \, {Var}(X) = 16, \, {Var}(Y) = 25, \, {Cov}(X, Y) = 14. \] Then \[ 2\pi \left( \Pr(X>2, Y>3) - \frac{1}{4} \right) \] equals _________ (rounded off to two decimal places).
Let \( X_1, X_2 \) be a random sample from a population having probability density function
\[ f_{\theta}(x) = \begin{cases} e^{(x-\theta)} & \text{if } -\infty < x \leq \theta, \\ 0 & \text{otherwise}, \end{cases} \] where \( \theta \in \mathbb{R} \) is an unknown parameter. Consider testing \( H_0: \theta \geq 0 \) against \( H_1: \theta < 0 \) at level \( \alpha = 0.09 \). Let \( \beta(\theta) \) denote the power function of a uniformly most powerful test. Then \( \beta(\log_e 0.36) \) equals ________ (rounded off to two decimal places).
Let \( X_1, X_2, \dots, X_7 \) be a random sample from a population having the probability density function \[ f(x) = \frac{1}{2} \lambda^3 x^2 e^{-\lambda x}, \quad x>0, \] where \( \lambda>0 \) is an unknown parameter. Let \( \hat{\lambda} \) be the maximum likelihood estimator of \( \lambda \), and \( E(\hat{\lambda} - \lambda) = \alpha \lambda \) be the corresponding bias, where \( \alpha \) is a real constant. Then the value of \( \frac{1}{\alpha} \) equals __________ (answer in integer).