To find the variance of \(X+3Y\), we use the formula for the variance of a linear combination of random variables:
\[ \mathrm{Var}(aX + bY) = a^2\mathrm{Var}(X) + b^2\mathrm{Var}(Y) + 2ab\mathrm{Cov}(X,Y) \] Here, \(a = 1\) and \(b = 3\). Given that \(\mathrm{Var}(X) = 1\), \(\mathrm{Var}(Y) = 1\), and the correlation coefficient \( \rho_{XY} = \frac{1}{3} \), we know: \(\mathrm{Cov}(X,Y) = \rho_{XY} \sqrt{\mathrm{Var}(X) \mathrm{Var}(Y)} = \frac{1}{3} \times 1 \times 1 = \frac{1}{3}\). Substitute these into the formula:
\[ \mathrm{Var}(X+3Y) = 1^2 \cdot 1 + 3^2 \cdot 1 + 2 \cdot 1 \cdot 3 \cdot \frac{1}{3} \] \[ = 1 + 9 + 2 \] \[ = 12 \] Therefore, \(\mathrm{Var}(X+3Y) = 12\).