We are asked to find \( \vec{b} \cdot (\vec{a} + \vec{c}) \). Using the distributive property of the dot product:
\[
\vec{b} \cdot (\vec{a} + \vec{c}) = \vec{b} \cdot \vec{a} + \vec{b} \cdot \vec{c}
\]
Now substitute the components of \( \vec{a} \), \( \vec{b} \), and \( \vec{c} \) into the dot product and compute:
\[
\vec{b} \cdot \vec{a} = 1 \times (-1) + (-1) \times 1 = -2
\]
Thus, the correct answer is \( -2 \).