Step 1: Express the given vector equation.
We are given that \( \vec{r} = t_1 \vec{a} + t_2 \vec{b} \). So, the vector \( \vec{r} \) can be written as:
\[
\vec{r} = t_1 (\hat{i} + 2\hat{j}) + t_2 (\hat{j} + 3\hat{k})
\]
This simplifies to:
\[
\vec{r} = t_1 \hat{i} + 2t_1 \hat{j} + t_2 \hat{j} + 3t_2 \hat{k}
\]
\[
\vec{r} = t_1 \hat{i} + (2t_1 + t_2) \hat{j} + 3t_2 \hat{k}
\]
Step 2: Set the equation equal to the given vector \( \vec{r} = 2\hat{i} + 7\hat{j} + 9\hat{k} \).
We compare this with \( \vec{r} = 2\hat{i} + 7\hat{j} + 9\hat{k} \) to get the following system of equations:
\[
t_1 = 2, 2t_1 + t_2 = 7, 3t_2 = 9
\]
Step 3: Solve the system of equations.
From \( 3t_2 = 9 \), we get:
\[
t_2 = 3
\]
Substitute \( t_2 = 3 \) into \( 2t_1 + t_2 = 7 \):
\[
2t_1 + 3 = 7 $\Rightarrow$ 2t_1 = 4 $\Rightarrow$ t_1 = 2
\]
Final Answer: The values of \( t_1 \) and \( t_2 \) are: \[ t_1 = 2, t_2 = 3 \]
Solve the following assignment problem for minimization :
Find x if the cost of living index is 150 :