Question:

Let V\overrightarrow V be a vector field and f be a scalar point function, then curl (fV)(f\overrightarrow V) is equivalent to________.

Updated On: Mar 12, 2025
  • (gradf)V+fdiv(V)(grad f) \cdot\overrightarrow V + fdiv(\overrightarrow V)
  • (gradf)×V+fcurl(V)(grad f)\times\overrightarrow V + fcurl(\overrightarrow V)
  • (gradf)(divV)+curl(curlV)(grad f)\cdot(div\overrightarrow V) + curl(curl\overrightarrow V)
  • grad[divV]fcurl(V)grad [div\overrightarrow V] - fcurl(\overrightarrow V)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

The correct answer is(B): (gradf)×V+fcurl(V)(grad f)\times\overrightarrow V + fcurl(\overrightarrow V)
Was this answer helpful?
0
0

Top Questions on Vector Algebra

View More Questions