Let $ A = \begin{bmatrix} 2 & 2 + p & 2 + p + q \\4 & 6 + 2p & 8 + 3p + 2q \\6 & 12 + 3p & 20 + 6p + 3q \end{bmatrix} $ If $ \text{det}(\text{adj}(\text{adj}(3A))) = 2^m \cdot 3^n, \, m, n \in \mathbb{N}, $ then $ m + n $ is equal to:
Consider the balanced transportation problem with three sources \( S_1, S_2, S_3 \), and four destinations \( D_1, D_2, D_3, D_4 \), for minimizing the total transportation cost whose cost matrix is as follows:
where \( \alpha, \lambda>0 \). If the associated cost to the starting basic feasible solution obtained by using the North-West corner rule is 290, then which of the following is/are correct?
Then, which one of the following is TRUE?
A four-arm uncontrolled un-signaled urban intersection of both-way traffic is illustrated in the figure. Vehicles approaching the intersection from the directions A, B, C, and D can move to either left, right, or continue in straight direction. No U-turn is allowed. In the given situation, the maximum number of vehicular crossing conflict points for this intersection is _________ (answer in integer)
An individual chooses a transport mode for a particular trip based on three attributes i.e., cost of journey (X), In-vehicle travel time to reach destination (Y), and Out-of-vehicle time taken to access mode at respective stops (Z). The values for these attributes for three modes Rail, Bus and Para-transit are given in the table. If the general utility (U) equation is \( U = - 0.5 \times X - 0.3 \times Y - 0.4 \times Z \), using the Logit model, the estimated probability of choosing Bus is _________ (rounded off to two decimal places).