The centroid \( G \) of a triangle is given by the formula:
\[
\overrightarrow{AG} = \frac{\overrightarrow{O} + \overrightarrow{B} + \overrightarrow{C}}{3}
\]
where \( A \) is taken as the origin, \( B \) has the position vector \( \overrightarrow{B} = 2\hat{i} + 2\hat{j} + \hat{k} \), and \( C \) has the position vector \( \overrightarrow{C} = 2\hat{i} + 4\hat{j} + 4\hat{k} \).
Substituting these values:
\[
\overrightarrow{AG} = \frac{0 + (2\hat{i} + 2\hat{j} + \hat{k}) + (2\hat{i} + 4\hat{j} + 4\hat{k})}{3}
\]
\[
= \frac{4\hat{i} + 6\hat{j} + 5\hat{k}}{3}
\]
Now, computing \( |\overrightarrow{AG}|^2 \):
\[
|\overrightarrow{AG}|^2 = \left( \frac{4}{3} \right)^2 + \left( \frac{6}{3} \right)^2 + \left( \frac{5}{3} \right)^2
\]
\[
= \frac{16}{9} + \frac{36}{9} + \frac{25}{9} = \frac{77}{9}
\]
Multiplying by \( \frac{22}{7} \):
\[
\frac{22}{7} \times \frac{77}{9} = \frac{1694}{63} = 33.
\]
Adding 5:
\[
33 + 5 = 38.
\]
Thus, the final result is:
Final Answer: \( \mathbf{38} \).