\(\left(\dfrac{\partial v_2}{\partial z} - \dfrac{\partial v_3}{\partial y}\right)\hat{i} + \left(\dfrac{\partial v_3}{\partial x} - \dfrac{\partial v_1}{\partial z}\right)\hat{j} + \left(\dfrac{\partial v_1}{\partial y} - \dfrac{\partial v_2}{\partial x}\right)\hat{k}\)
\(\left(\dfrac{\partial v_3}{\partial z} - \dfrac{\partial v_2}{\partial y}\right)\hat{i} + \left(\dfrac{\partial v_1}{\partial x} - \dfrac{\partial v_3}{\partial z}\right)\hat{j} + \left(\dfrac{\partial v_2}{\partial y} - \dfrac{\partial v_1}{\partial x}\right)\hat{k}\)
\(\left(\dfrac{\partial v_3}{\partial y} - \dfrac{\partial v_2}{\partial z}\right)\hat{i} + \left(\dfrac{\partial v_1}{\partial z} - \dfrac{\partial v_3}{\partial x}\right)\hat{j} + \left(\dfrac{\partial v_2}{\partial x} - \dfrac{\partial v_1}{\partial y}\right)\hat{k}\)
\(\left(\dfrac{\partial v_2}{\partial y} - \dfrac{\partial v_3}{\partial z}\right)\hat{i} + \left(\dfrac{\partial v_3}{\partial z} - \dfrac{\partial v_1}{\partial x}\right)\hat{j} + \left(\dfrac{\partial v_1}{\partial x} - \dfrac{\partial v_2}{\partial y}\right)\hat{k}\)
To find the curl of the vector function \(\vec{v} = v_1\hat{i} + v_2\hat{j} + v_3\hat{k}\), we use the formula for the curl of a vector field in Cartesian coordinates. The curl of a vector is given by:
\(\text{curl } \vec{v} = \nabla \times \vec{v} = \left(\dfrac{\partial v_3}{\partial y} - \dfrac{\partial v_2}{\partial z}\right)\hat{i} + \left(\dfrac{\partial v_1}{\partial z} - \dfrac{\partial v_3}{\partial x}\right)\hat{j} + \left(\dfrac{\partial v_2}{\partial x} - \dfrac{\partial v_1}{\partial y}\right)\hat{k}\)
This is derived from the determinant of the following symbolic matrix:
| \(\hat{i}\) | \(\hat{j}\) | \(\hat{k}\) |
| \(\dfrac{\partial}{\partial x}\) | \(\dfrac{\partial}{\partial y}\) | \(\dfrac{\partial}{\partial z}\) |
| \(v_1\) | \(v_2\) | \(v_3\) |
Expanding the determinant gives the expression for the curl as mentioned above. Let's break it down for clarity:
Thus, the correct expression for the curl of the vector \(\vec{v}\) is:
\(\left(\dfrac{\partial v_3}{\partial y} - \dfrac{\partial v_2}{\partial z}\right)\hat{i} + \left(\dfrac{\partial v_1}{\partial z} - \dfrac{\partial v_3}{\partial x}\right)\hat{j} + \left(\dfrac{\partial v_2}{\partial x} - \dfrac{\partial v_1}{\partial y}\right)\hat{k}\)
This matches the third option given in the question.