This is a constrained optimization problem in economics, aiming to maximize output $Q$ subject to a total cost constraint.
$\text{1. Define the Problem}$
$\text{Production Function}$
$$Q = \sqrt{L^2 + K^2}$$
$\text{Cost Constraint}$
The total cost ($\text{TC}$) is the sum of the cost of labor ($\text{L}$) and the cost of capital ($\text{K}$).
$$\text{TC} = P_L L + P_K K$$
Where:
$P_L = 30 \text{ Rs}$ (unit price of labor)
$P_K = 40 \text{ Rs}$ (unit price of capital)
$\text{TC} = 580 \text{ Rs}$ (total cost)
$$\text{Constraint: } 30L + 40K = 580$$
$\text{Objective}$
Maximize $Q$ subject to the cost constraint.
$\text{2. Optimization using Lagrange Multipliers}$
We seek to maximize $f(L, K) = \sqrt{L^2 + K^2}$ subject to $g(L, K) = 30L + 40K - 580 = 0$.
$\text{Lagrangian Function}$
$$\mathcal{L}(L, K, \lambda) = \sqrt{L^2 + K^2} - \lambda (30L + 40K - 580)$$
$\text{First Order Conditions (F.O.C)}$
Set the partial derivatives equal to zero:
$$\frac{\partial \mathcal{L}}{\partial L} = \frac{1}{2\sqrt{L^2 + K^2}} (2L) - 30\lambda = 0$$
$$\frac{L}{\sqrt{L^2 + K^2}} = 30\lambda \quad \cdots (1)$$
$$\frac{\partial \mathcal{L}}{\partial K} = \frac{1}{2\sqrt{L^2 + K^2}} (2K) - 40\lambda = 0$$
$$\frac{K}{\sqrt{L^2 + K^2}} = 40\lambda \quad \cdots (2)$$
$$\frac{\partial \mathcal{L}}{\partial \lambda} = -(30L + 40K - 580) = 0$$
$$30L + 40K = 580 \quad \cdots (3)$$
$\text{Equating the Marginal Rate of Technical Substitution (MRTS)}$
Divide equation (1) by equation (2):
$$\frac{L/\sqrt{L^2 + K^2}}{K/\sqrt{L^2 + K^2}} = \frac{30\lambda}{40\lambda}$$
$$\frac{L}{K} = \frac{30}{40} = \frac{3}{4}$$
This gives the optimal ratio of inputs:
$$L = \frac{3}{4}K \quad \cdots (4)$$
$\text{3. Solve for } L \text{ and } K$
Substitute equation (4) into the cost constraint (3):
$$30L + 40K = 580$$
$$30\left(\frac{3}{4}K\right) + 40K = 580$$
$$\frac{90}{4}K + 40K = 580$$
$$22.5K + 40K = 580$$
$$62.5K = 580$$
Solve for $K$:
$$K = \frac{580}{62.5} = \frac{580}{250/4} = \frac{580 \times 4}{250} = \frac{2320}{250} = 9.28$$
Solve for $L$ using equation (4):
$$L = \frac{3}{4}K = \frac{3}{4} (9.28) = 3 \times 2.32 = 6.96$$
Optimal inputs are $\mathbf{L = 6.96}$ and $\mathbf{K = 9.28}$.
$\text{4. Calculate Maximum Output } Q$
Substitute the optimal values of $L$ and $K$ into the production function:
$$Q_{\max} = \sqrt{L^2 + K^2}$$
$$Q_{\max} = \sqrt{(6.96)^2 + (9.28)^2}$$
$$Q_{\max} = \sqrt{48.4416 + 86.1184}$$
$$Q_{\max} = \sqrt{134.56}$$
Calculate the final value:
$$Q_{\max} = 11.600$$
$\text{Final Answer}$
Rounding off to 2 decimal places:
$$Q_{\max} = 11.60$$
This value falls within the provided range of $11.55$ to $11.65$.
$$\text{The maximum value of } Q \text{ subject to the cost constraint is } \mathbf{11.60}$$
The sum of the payoffs to the players in the Nash equilibrium of the following simultaneous game is ............
| Player Y | ||
|---|---|---|
| C | NC | |
| Player X | X: 50, Y: 50 | X: 40, Y: 30 |
| X: 30, Y: 40 | X: 20, Y: 20 | |