Let the probability mass function (p.m.f.) of a random variable X be \( P(X = x) = \binom{4{x} \left( \frac{5}{9} \right)^x \left( \frac{4}{9} \right)^{4-x} \), for \( x = 0, 1, 2, 3, 4 \), then E(X) is equal to _______. }
Show Hint
For binomial distribution, \( E(X) = n \cdot p \); verify p.m.f. sums to 1 if needed.
This is a binomial distribution with \( n = 4 \), \( p = \frac{5}{9} \), \( q = \frac{4}{9} \). Expected value:
\[
E(X) = n \cdot p = 4 \cdot \frac{5}{9} = \frac{20}{9}.
\]