Given the position vectors of the vertices of the triangle, we use the properties of centroid and orthocenter to calculate the required sum \( \alpha + 2\beta + 5\gamma \).
Final Answer: \( \alpha + 2\beta + 5\gamma = 3 \).
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is: