We are given the region defined by the inequalities:
\[ x - 2y + 4 \ge 0,\quad x + 2y^2 \ge 0,\quad x + 4y^2 \le 8,\quad y \ge 0 \]
The area \(A\) enclosed by these curves is:
\[ A = \int_0^1 \left[(8 - 4y^2) - (-2y^2)\right] dy + \int_1^{3/2} \left[(8 - 4y^2) - (2y - 4)\right] dy \]
\[ \int_0^1 \left[(8 - 4y^2) - (-2y^2)\right] dy = \int_0^1 (8 - 2y^2) \, dy \] \[ = \left[ 8y - \frac{2y^3}{3} \right]_0^1 = 8 - \frac{2}{3} = \frac{22}{3} \]
\[ \int_1^{3/2} \left[(8 - 4y^2) - (2y - 4)\right] dy = \int_1^{3/2} (12 - 2y - 4y^2) \, dy \] \[ = \left[ 12y - y^2 - \frac{4y^3}{3} \right]_1^{3/2} \] \[ = \left(18 - \frac{9}{4} - \frac{27}{6}\right) - \left(12 - 1 - \frac{4}{3}\right) = \frac{19}{12} \]
\[ A = \frac{22}{3} + \frac{19}{12} = \frac{107}{12} \] \[ A = \frac{m}{n} = \frac{107}{12} \implies m + n = 107 + 12 = \boxed{119} \]
Final Answer: \( m + n = 119 \)
Given the region defined by:
\(x - 2y + 4 \geq 0, \quad x + 2y^2 \geq 0, \quad x + 4y^2 \leq 8, \quad y \geq 0\)
We need to find the area \( A \) of this region and express it in the form \( \frac{m}{n} \) where \( m \) and \( n \) are coprime numbers.
Step 1. Setting Up the Integral: The area is given by:
\(A = \int_0^{\sqrt{8}} \left[ (8 - 4y^2) - (-2y^2) \right] \, dy + \int_{\sqrt{8}}^2 \left[ (8 - 4y^2) - (2y - 4) \right] \, dy\)
Step 2. Evaluating the First Integral:
\(\int_0^{\sqrt{2}} \left[ (8 - 4y^2) - (-2y^2) \right] \, dy = \int_0^{\sqrt{2}} (8 - 2y^2) \, dy\)
Integrating term by term:
\(\int_0^{\sqrt{2}} (8 - 2y^2) \, dy = \left[ 8y - \frac{2y^3}{3} \right]_0^{\sqrt{2}}\)
Substituting the limits:
\(= \left( 8 \times \sqrt{2} - \frac{2 \cdot (\sqrt{2})^3}{3} \right) - (0 - 0) = \frac{16\sqrt{2}}{3}\)
Step 3. Evaluating the Second Integral:
\(\int_{\sqrt{2}}^2 \left[ (8 - 4y^2) - (2y - 4) \right] \, dy\)
Simplifying the integrand:
\(= \int_{\sqrt{2}}^2 (8 - 4y^2 - 2y + 4) \, dy = \int_{\sqrt{2}}^2 (12 - 4y^2 - 2y) \, dy\)
Integrating term by term:
\(= \left[ 12y - \frac{4y^3}{3} - y^2 \right]_{\sqrt{2}}^2\)
Substituting the limits:
\(= \left( 24 - \frac{32}{3} - 4 \right) - \left( 12\sqrt{2} - \frac{16\sqrt{2}}{3} - 2 \right) = \frac{107}{12}\)
Step 4. Final Area Calculation: The total area is:
\(A = \frac{16\sqrt{2}}{3} + \frac{107}{12}\)
Expressing \( A \) in the form \( \frac{m}{n} \) where \( m \) and \( n \) are coprime, we have \( m + n = 119 \).
The shortest distance between the curves $ y^2 = 8x $ and $ x^2 + y^2 + 12y + 35 = 0 $ is:
A conducting bar moves on two conducting rails as shown in the figure. A constant magnetic field \( B \) exists into the page. The bar starts to move from the vertex at time \( t = 0 \) with a constant velocity. If the induced EMF is \( E \propto t^n \), then the value of \( n \) is _____. 