Step 1: Use the rank–nullity theorem.
\[ \text{Rank}(T) + \text{Nullity}(T) = 7. \] \[ \Rightarrow \text{Rank}(T) = 7 - 2 = 5. \]
Step 2: Relationship between \( \text{Nullity}(T^2) \) and \( \text{Nullity}(T) \).
\[ \text{Null}(T) \subseteq \text{Null}(T^2), \] so \( \text{Nullity}(T^2) \geq 2. \)
Step 3: For minimum possible \( \text{Rank}(T^2) \), take maximum nullity.
Maximum \( \text{Nullity}(T^2) = 4 \) (since rank cannot increase). \[ \Rightarrow \text{Rank}(T^2) = 7 - 4 = 3. \]
Final Answer: \[ \boxed{3} \]