Let \(A = \begin{pmatrix} 0 & 1 & c \\ 1 & a & d\\ 1 & b & e \end{pmatrix}\), where \(a, b, c, d, e \in \{0, 1\}\).
We need to find the number of such matrices \(A\) with \(|A| \in \{-1, 1\}\).
The determinant of \(A\) is: \(|A| = 0(ae - bd) - 1(e - d) + c(b - a) = -(e - d) + c(b - a) = d - e + c(b - a)\).
Since \(a, b, c, d, e \in \{0, 1\}\), the possible values of \(b - a\) are \(-1, 0, 1\). Also, \(d - e\) can be \(-1, 0, 1\).
We want \(|A| \in \{-1, 1\}\), so \(d - e + c(b - a) = \pm 1\).
Case 1: \(c = 0\). Then \(d - e = \pm 1\).
If \(d - e = 1\), then \(d = 1, e = 0\). If \(d - e = -1\), then \(d = 0, e = 1\).
In this case, \(c = 0\), \(d - e = \pm 1\).
\(a\) and \(b\) can take any value in \(\{0, 1\}\), so we have 2 choices for \(a\) and 2 choices for \(b\).
Therefore, we have \(1 \cdot 2 \cdot 2 \cdot 2 = 8\) matrices.
Case 2: \(c = 1\).
Then \(d - e + b - a = \pm 1\). \(d - e + b - a = 1 \Rightarrow d + b = 1 + e + a\).
\(d - e + b - a = -1 \Rightarrow d + b = e + a - 1\). \(d + b = 1 + e + a\):
- \(d + b = 0\): \(d = b = 0\).
Then \(e + a = -1\), which is impossible.
- \(d + b = 1\): \((d = 1, b = 0)\) or \((d = 0, b = 1)\).
If \(d = 1, b = 0\), then \(e + a = 0\), so \(e = 0, a = 0\).
(1, 0, 0, 0) If \(d = 0, b = 1\), then \(e + a = 0\), so \(e = 0, a = 0\).
(0, 1, 0, 0) - \(d + b = 2\): \(d = b = 1\).
Then \(e + a = 1\), so \((e, a) = (1, 0), (0, 1)\). (1, 1, 1, 0), (1, 1, 0, 1)
\(d + b = e + a - 1\): Since \(e+a\) must be at least \(0\), we must have \(e+a = 0\), \(1\), or \(2\).
Thus, \(e+a-1 = -1, 0, 1\).
- \(d+b = -1\): impossible since \(d, b \ge 0\). - \(d+b = 0\): \(d = b = 0\).
Then \(e + a = 1\), so \((e, a) = (1, 0), (0, 1)\). (0, 0, 1, 0), (0, 0, 0, 1) - \(d+b = 1\):
\((d = 1, b = 0)\) or \((d = 0, b = 1)\).
Then \(e + a = 2\), so \(e = 1, a = 1\). (1, 0, 1, 1), (0, 1, 1, 1) - \(d+b = 2\):
\(d = b = 1\).
Then \(e + a = 3\), impossible.
In total, we have the following values for (d, b, e, a):
(1, 0, 0, 0), (0, 1, 0, 0), (1, 1, 1, 0), (1, 1, 0, 1) (0, 0, 1, 0), (0, 0, 0, 1), (1, 0, 1, 1), (0, 1, 1, 1)
So we have 8 cases. If \(c = 1\), there are 8 possibilities for \((a,b,d,e)\).
Hence the number of elements in S is \(8+8 = 16\).
Final Answer: The final answer is \(\boxed{16}\)