Let \(A = \begin{pmatrix} 0 & 1 & c \\ 1 & a & d\\ 1 & b & e \end{pmatrix}\), where \(a, b, c, d, e \in \{0, 1\}\).
We need to find the number of such matrices \(A\) with \(|A| \in \{-1, 1\}\).
The determinant of \(A\) is: \(|A| = 0(ae - bd) - 1(e - d) + c(b - a) = -(e - d) + c(b - a) = d - e + c(b - a)\).
Since \(a, b, c, d, e \in \{0, 1\}\), the possible values of \(b - a\) are \(-1, 0, 1\). Also, \(d - e\) can be \(-1, 0, 1\).
We want \(|A| \in \{-1, 1\}\), so \(d - e + c(b - a) = \pm 1\).
Case 1: \(c = 0\). Then \(d - e = \pm 1\).
If \(d - e = 1\), then \(d = 1, e = 0\). If \(d - e = -1\), then \(d = 0, e = 1\).
In this case, \(c = 0\), \(d - e = \pm 1\).
\(a\) and \(b\) can take any value in \(\{0, 1\}\), so we have 2 choices for \(a\) and 2 choices for \(b\).
Therefore, we have \(1 \cdot 2 \cdot 2 \cdot 2 = 8\) matrices.
Case 2: \(c = 1\).
Then \(d - e + b - a = \pm 1\). \(d - e + b - a = 1 \Rightarrow d + b = 1 + e + a\).
\(d - e + b - a = -1 \Rightarrow d + b = e + a - 1\). \(d + b = 1 + e + a\):
- \(d + b = 0\): \(d = b = 0\).
Then \(e + a = -1\), which is impossible.
- \(d + b = 1\): \((d = 1, b = 0)\) or \((d = 0, b = 1)\).
If \(d = 1, b = 0\), then \(e + a = 0\), so \(e = 0, a = 0\).
(1, 0, 0, 0) If \(d = 0, b = 1\), then \(e + a = 0\), so \(e = 0, a = 0\).
(0, 1, 0, 0) - \(d + b = 2\): \(d = b = 1\).
Then \(e + a = 1\), so \((e, a) = (1, 0), (0, 1)\). (1, 1, 1, 0), (1, 1, 0, 1)
\(d + b = e + a - 1\): Since \(e+a\) must be at least \(0\), we must have \(e+a = 0\), \(1\), or \(2\).
Thus, \(e+a-1 = -1, 0, 1\).
- \(d+b = -1\): impossible since \(d, b \ge 0\). - \(d+b = 0\): \(d = b = 0\).
Then \(e + a = 1\), so \((e, a) = (1, 0), (0, 1)\). (0, 0, 1, 0), (0, 0, 0, 1) - \(d+b = 1\):
\((d = 1, b = 0)\) or \((d = 0, b = 1)\).
Then \(e + a = 2\), so \(e = 1, a = 1\). (1, 0, 1, 1), (0, 1, 1, 1) - \(d+b = 2\):
\(d = b = 1\).
Then \(e + a = 3\), impossible.
In total, we have the following values for (d, b, e, a):
(1, 0, 0, 0), (0, 1, 0, 0), (1, 1, 1, 0), (1, 1, 0, 1) (0, 0, 1, 0), (0, 0, 0, 1), (1, 0, 1, 1), (0, 1, 1, 1)
So we have 8 cases. If \(c = 1\), there are 8 possibilities for \((a,b,d,e)\).
Hence the number of elements in S is \(8+8 = 16\).
Final Answer: The final answer is \(\boxed{16}\)
To solve the problem, we analyze the set \(S\) of \(3 \times 3\) matrices of the form:
\[ A = \begin{pmatrix} 0 & 1 & c \\ 1 & a & d \\ 1 & b & e \end{pmatrix} \] where \(a, b, c, d, e \in \{0,1\}\), and the determinant \(|A| \in \{-1, 1\}\). We want to find how many such matrices have determinant \(\pm 1\).
Step 1: Total possible matrices
Each of the 5 variables \(a,b,c,d,e\) can be either 0 or 1.
Number of matrices: \[ 2^5 = 32 \]
Step 2: Expression for determinant \(|A|\)
Calculate \(|A|\) using cofactor expansion along the first row:
\[ |A| = 0 \times M_{11} - 1 \times M_{12} + c \times M_{13} \] where \(M_{ij}\) are minors.
Calculate minors:
\[ M_{12} = \begin{vmatrix} 1 & d \\ 1 & e \end{vmatrix} = 1 \cdot e - 1 \cdot d = e - d \] \[ M_{13} = \begin{vmatrix} 1 & a \\ 1 & b \end{vmatrix} = 1 \cdot b - 1 \cdot a = b - a \]
So determinant is:
\[ |A| = -1 \times (e - d) + c \times (b - a) = - (e - d) + c (b - a) = d - e + c(b - a) \] Since all variables are 0 or 1, each term can be 0 or 1, and differences are from \(\{-1,0,1\}\).
Step 3: Values of \(|A|\) for each possible combination
We want \(|A| = \pm 1\), so possible values are \(1\) or \(-1\).
Rewrite:
\[ |A| = d - e + c(b - a) \] All variables \(a,b,c,d,e\) are 0 or 1.
Step 4: Enumerate possibilities for \(c, b, a\):
Values of \(b - a\) can be:
| \(b\) | \(a\) | \(b - a\) | |-------|-------|---------| | 0 | 0 | 0 | | 0 | 1 | -1 | | 1 | 0 | 1 | | 1 | 1 | 0 |
Step 5: Calculate \(c(b - a)\):
Since \(c = 0\) or \(1\), \(c(b - a)\) is either 0 or \(b - a\).
Step 6: Now write \(|A| = d - e + c(b - a)\) = \(d - e + k\), where \(k = 0\) or \(b - a\).
Step 7: Possible values of \(d - e\):
| \(d\) | \(e\) | \(d - e\) | |-------|-------|---------| | 0 | 0 | 0 | | 0 | 1 | -1 | | 1 | 0 | 1 | | 1 | 1 | 0 |
Step 8: Now \(|A| = (d - e) + k\), and we want \(|A| = \pm 1\).
Case 1: \(k = 0\)
\(|A| = d - e\). So \(|A| = \pm 1\) if \(d - e = \pm 1\), i.e., if \(d=1, e=0\) or \(d=0, e=1\).
Case 2: \(k = 1\)
\(|A| = d - e + 1\). For \(|A| = 1\), we have:
\[ d - e + 1 = 1 \implies d - e = 0 \] So \(d = e\), either both 0 or both 1.
Case 3: \(k = -1\)
\(|A| = d - e - 1\). For \(|A| = -1\), we have:
\[ d - e - 1 = -1 \implies d - e = 0 \] Again, \(d = e\).
Step 9: Summarize:
- When \(k = 0\), \(|A| = \pm 1\) if \(d \neq e\) (2 cases).
- When \(k = \pm 1\), \(|A| = \pm 1\) if \(d = e\) (2 cases).
- When \(k\) takes values 0, 1, or -1 depending on \(c,b,a\).
Step 10: Count the number of \((a,b,c)\) tuples for each \(k\):
Recall from Step 4:
| \(b\) | \(a\) | \(b - a\) | |-------|-------|---------| | 0 | 0 | 0 | | 0 | 1 | -1 | | 1 | 0 | 1 | | 1 | 1 | 0 |
Number of \((a,b)\) pairs with:
- \(b - a = 0\): 2 pairs \((0,0)\) and \((1,1)\)
- \(b - a = 1\): 1 pair \((1,0)\)
- \(b - a = -1\): 1 pair \((0,1)\)
Since \(c\) can be 0 or 1:
- For \(k = 0\), when \(c=0\), \(k=0\) always.
- For \(k = b - a\), when \(c=1\), \(k = b - a\).
Thus: - \(k=0\) occurs when \(c=0\) (all 4 \((a,b)\) pairs) → 4 cases
- \(k=1\) occurs when \(c=1\) and \((b,a) = (1,0)\) → 1 case
- \(k=-1\) occurs when \(c=1\) and \((b,a) = (0,1)\) → 1 case
- \(k=0\) also occurs when \(c=1\) and \((b,a) = (0,0)\) or \((1,1)\) → 2 cases
Total \((a,b,c)\) combinations = \(4 \times 2 = 8\).
Step 11: For each \(k\), count valid \(d,e\) pairs:
- When \(k=0\), \(|A| = d - e\), so \(|A| = \pm 1\) if \(d \neq e\) → 2 valid \((d,e)\) pairs
- When \(k = \pm 1\), \(|A| = d - e \pm 1\), so \(|A| = \pm 1\) if \(d = e\) → 2 valid \((d,e)\) pairs (since \(d,e \in \{0,1\}\))
Step 12: Calculate total number of matrices in \(S\):
- For \(k=0\), number of \((a,b,c)\) cases = 6 (4 when \(c=0\) + 2 when \(c=1\) and \(b-a=0\))
Each has 2 valid \((d,e)\) pairs → \(6 \times 2 = 12\)
- For \(k=1\), number of \((a,b,c)\) cases = 1
Each has 2 valid \((d,e)\) pairs → \(1 \times 2 = 2\)
- For \(k=-1\), number of \((a,b,c)\) cases = 1
Each has 2 valid \((d,e)\) pairs → \(1 \times 2 = 2\)
Total valid matrices = \(12 + 2 + 2 = 16\).
Final Answer:
\[ \boxed{16} \]
Figure 1 shows the configuration of main scale and Vernier scale before measurement. Fig. 2 shows the configuration corresponding to the measurement of diameter $ D $ of a tube. The measured value of $ D $ is:
The center of a disk of radius $ r $ and mass $ m $ is attached to a spring of spring constant $ k $, inside a ring of radius $ R>r $ as shown in the figure. The other end of the spring is attached on the periphery of the ring. Both the ring and the disk are in the same vertical plane. The disk can only roll along the inside periphery of the ring, without slipping. The spring can only be stretched or compressed along the periphery of the ring, following Hooke’s law. In equilibrium, the disk is at the bottom of the ring. Assuming small displacement of the disc, the time period of oscillation of center of mass of the disk is written as $ T = \frac{2\pi}{\omega} $. The correct expression for $ \omega $ is ( $ g $ is the acceleration due to gravity):