The given ellipse is
\[
\frac{x^2}{25} + \frac{y^2}{9} = 1,
\]
where
\[
a^2 = 25,\quad b^2 = 9.
\]
Step 1: Find the foci.
For an ellipse,
\[
c^2 = a^2 - b^2 = 25 - 9 = 16 \Rightarrow c = 4.
\]
Hence, the foci are
\[
S(4,0), \quad S'(-4,0).
\]
Step 2: Use known distance relations for ellipse.
For any point \(P\) on the ellipse,
\[
SP + S'P = 2a = 10.
\]
Step 3: Evaluate the given expression.
Using the identity,
\[
(SP)^2 + (S'P)^2 - SP \cdot S'P
= (SP + S'P)^2 - 3(SP)(S'P),
\]
\[
= 10^2 - 3(SP)(S'P).
\]
Given this equals 37,
\[
100 - 3(SP)(S'P) = 37
\]
\[
(SP)(S'P) = 21.
\]
Step 4: Express \(SP \cdot S'P\) in terms of coordinates.
For a point \(P(\alpha,\beta)\),
\[
SP \cdot S'P
= \sqrt{(\alpha-4)^2 + \beta^2}\sqrt{(\alpha+4)^2 + \beta^2}.
\]
Squaring both sides,
\[
(SP \cdot S'P)^2
= \left[(\alpha^2+\beta^2+16)^2 - (8\alpha)^2\right].
\]
Using \(SP \cdot S'P = 21\),
\[
(\alpha^2+\beta^2+16)^2 - 64\alpha^2 = 441.
\]
Step 5: Use ellipse equation.
From the ellipse,
\[
\frac{\alpha^2}{25} + \frac{\beta^2}{9} = 1
\Rightarrow 9\alpha^2 + 25\beta^2 = 225.
\]
Solving simultaneously gives
\[
\alpha^2 + \beta^2 = 13.
\]
Final Answer:
\[
\boxed{13}
\]