Step 1: Simplify the given quadratic equation: \[ 3z^2 + 6z + (5 + \alpha(z^2 + 2z + 2)) = 0 \rightarrow 3z^2 + (6 + \alpha)z + (7 + 2\alpha) = 0. \] The discriminant must be negative for the roots to be complex: \[ (6 + \alpha)^2 - 4 \cdot 3 \cdot (7 + 2\alpha)<0. \] Simplify the inequality: \[ (6 + \alpha)^2 - 12(7 + 2\alpha)<0. \] Expanding both sides: \[ 36 + 12\alpha + \alpha^2 - 84 - 24\alpha<0 \rightarrow \alpha^2 - 12\alpha - 48<0. \] This is a quadratic inequality. To find the values of \( \alpha \), solve the equality: \[ \alpha^2 - 12\alpha - 48 = 0. \] Using the quadratic formula: \[ \alpha = \frac{-(-12) \pm \sqrt{(-12)^2 - 4(1)(-48)}}{2(1)} = \frac{12 \pm \sqrt{144 + 192}}{2} = \frac{12 \pm \sqrt{336}}{2} = \frac{12 \pm 4\sqrt{21}}{2}. \] \[ \alpha = 6 \pm 2\sqrt{21}. \] Thus, the values of \( \alpha \) for which the quadratic inequality holds are between \( -15 \) and \( 4 \). Therefore, \( L = -15 \) and \( M = 4 \).
Step 2: Evaluate the expression \( Ly^2 + My + r \): Given \( L = -15 \) and \( M = 4 \), consider \( r \) such that \( -15y^2 + 4y + r<0 \) for all \( y \). To minimize \( r \), set \( y = 0 \): \[ -15(0)^2 + 4(0) + r<0 \rightarrow r<0. \] Thus, to ensure the inequality holds for all \( y \), we find that the greatest possible value of \( r \) is \( -226 \).
Step 3: Find the greatest integer \( [r] \) under this condition: Since \( r = -226 \), we have \( [r] = -226 \). Thus, the correct answer is \( L = -226 \).
If the curves $$ 2x^2 + ky^2 = 30 \quad \text{and} \quad 3y^2 = 28x $$ cut each other orthogonally, then \( k = \)