Lines:
\[
L_1: \sqrt{3}x - y + 2 = 0 \quad L_2: \sqrt{3}x + y - 2 = 0
\]
Add both to find intersection point:
\[
2\sqrt{3}x = 0 \Rightarrow x = 0,\ y = 2
\Rightarrow \text{Point of intersection is } (0, 2)
\]
Point \( P \) is 5 units away from this and lies on either line.
Try line \( \sqrt{3}x - y + 2 = 0 \Rightarrow y = \sqrt{3}x + 2 \)
Use distance formula between \( P(x, y) \) and \( (0, 2) \):
\[
\begin{align}
\sqrt{(x)^2 + (y - 2)^2} = 5
\Rightarrow (y - 2)^2 + x^2 = 25
\Rightarrow (\sqrt{3}x)^2 + x^2 = 25 \Rightarrow 3x^2 + x^2 = 25 \Rightarrow x^2 = \frac{25}{4}
\Rightarrow x = \pm\frac{5}{2}
\Rightarrow y = \sqrt{3} \cdot \frac{5}{2} + 2 = 2 + \frac{5\sqrt{3}}{2}
\]
Now perpendicular from \( P \) to \( y \)-axis is horizontal → distance is \( |x| = \frac{5}{2} \)
So distance from origin to foot of perpendicular is:
\[
\sqrt{x^2 + 0^2} = \frac{5}{2},\quad \text{but foot is at } x = 0,\ y = y
\Rightarrow \text{Distance from (0,0) to } (0,y) = |y| = 2 + \frac{5\sqrt{3}}{2}
\]