Step 1: Set up the limits for integration.
We are given the region \( \Omega \) bounded by \( z = x^2 + y^2 \), \( z = 4 \), \( x = 0 \), and \( y = 0 \).
To find the volume, set up the triple integral:
\[
V = \int_{0}^{2} \int_{0}^{\sqrt{4 - x^2}} \int_{x^2 + y^2}^{4} dz \, dy \, dx.
\]
Step 2: Integrate with respect to \( z \).
The integral becomes:
\[
V = \int_{0}^{2} \int_{0}^{\sqrt{4 - x^2}} \left[ z \right]_{z = x^2 + y^2}^{z = 4} dy \, dx = \int_{0}^{2} \int_{0}^{\sqrt{4 - x^2}} (4 - x^2 - y^2) \, dy \, dx.
\]
Step 3: Integrate with respect to \( y \).
Integrating with respect to \( y \) gives:
\[
V = \int_{0}^{2} \left[ (4 - x^2) y - \frac{y^3}{3} \right]_{0}^{\sqrt{4 - x^2}} dx.
\]
After substituting the limits:
\[
V = \int_{0}^{2} \left( (4 - x^2)\sqrt{4 - x^2} - \frac{(4 - x^2)^{3/2}}{3} \right) dx.
\]
Step 4: Final evaluation of the integral.
The exact volume, after evaluating this integral, gives \( 2\pi \).
Final Answer:
\[
\boxed{2\pi}.
\]