Given:
\[
x^3 - 3x^2y - xy^2 + 3y^3 = 0
\]
Factorising,
\[
x^2(x-3y) - y^2(x-3y) = 0
\]
\[
(x^2-y^2)(x-3y)=0
\]
\[
(x-y)(x+y)(x-3y)=0
\]
Since $x,y\in\mathbb{N}$, $x+y\neq0$.
Hence,
\[
(x,y)\in R \iff x=y \ \text{or}\ x=3y
\]
Reflexive:
For every $x\in\mathbb{N}$, $x=x$, hence $(x,x)\in R$.
So, $R$ is reflexive.
Symmetric:
$(3,1)\in R$ since $3=3(1)$, but $(1,3)\notin R$.
Hence, $R$ is not symmetric.
Transitive:
$(9,3)\in R$ and $(3,1)\in R$, but $(9,1)\notin R$.
Hence, $R$ is not transitive.
\[
\boxed{\text{R is reflexive but neither symmetric nor transitive}}
\]