We have:
\[
f(x) = x^2 + \frac{1}{x^2}, \quad g(x) = x - \frac{1}{x}
\Rightarrow \frac{f(x)}{g(x)} = \frac{x^2 + \frac{1}{x^2}}{x - \frac{1}{x}}.
\]
Let \( t = x - \frac{1}{x} \), then:
\[
x^2 + \frac{1}{x^2} = t^2 + 2.
\]
Hence,
\[
\frac{f(x)}{g(x)} = \frac{t^2 + 2}{t}.
\]
Minimize \( \frac{t^2 + 2}{t} \). Using calculus:
\[
y = \frac{t^2 + 2}{t}, \quad \frac{dy}{dt} = \frac{t(t^2 + 2)' - (t^2 + 2)}{t^2} = \frac{2t^2 - (t^2 + 2)}{t^2} = \frac{t^2 - 2}{t^2}.
\]
Setting derivative zero:
\[
t^2 - 2 = 0 \Rightarrow t = \pm\sqrt{2}.
\]
Compute:
\[
\frac{t^2 + 2}{t} = \frac{4}{\sqrt{2}} = 2\sqrt{2}.
\]