Let \( f(x) = x^2 + \frac{1}{x^2} \) and \( g(x) = x - \frac{1}{x} \) for \( x \in \mathbb{R} \setminus \{-1, 0, 1\} \). Then, the local minimum of \( \frac{f(x)}{g(x)} \) is:
Show Hint
Functional Extremum}
Substitute with symmetry: Let \( t = x - \frac{1}{x} \)
Transform expression to a single variable to simplify calculus
Use derivatives to locate local minima