Step 1: Compute derivatives.
\[ f(x)=x^2+ax+b \]
\[ f'(x)=2x+a \]
\[ f''(x)=2 \]
Step 2: Form new equation.
\[ f(x)+f'(x)+f''(x)=0 \]
\[ (x^2+ax+b)+(2x+a)+2=0 \]
\[ x^2+(a+2)x+(b+a+2)=0 \]
Step 3: Use condition that roots of \(f(x)\) are imaginary.
Imaginary roots means discriminant of \(f(x)\) is negative:
\[ a^2-4b<0 \Rightarrow 4b>a^2 \]
Step 4: Discriminant of new quadratic.
\[ \Delta'=(a+2)^2-4(b+a+2) \]
\[ =a^2+4a+4-4b-4a-8 \]
\[ =a^2-4b-4 \]
Step 5: Prove \(\Delta'<0\).
Given \(a^2-4b<0\).
So \(a^2-4b-4\) is definitely negative.
\[ \Delta'<0 \]
Thus roots are imaginary.
Final Answer:
\[ \boxed{\text{imaginary}} \]
If the given figure shows the graph of polynomial \( y = ax^2 + bx + c \), then: