Question:

Let \( f(x) = \cos^{-1} \left( \frac{1 - \tan^2 x}{1 + \tan^2 x} \right) \). Then \( f\left( \frac{\pi}{2} \right) \) is equal to:

Show Hint

We use the identity \( \frac{1 - \tan^2 x}{1 + \tan^2 x} = \cos(2x) \) to simplify the expression.
Updated On: Mar 7, 2025
  • -1
  • 2
  • 1
  • \( \frac{\sqrt{3}}{2} \)
  • \( \sqrt{3} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

We are given the function \( f(x) = \cos^{-1} \left( \frac{1 - \tan^2 x}{1 + \tan^2 x} \right) \). 
Using the trigonometric identity \( \frac{1 - \tan^2 x}{1 + \tan^2 x} = \cos(2x) \), we can rewrite the function as: \[ f(x) = \cos^{-1}(\cos(2x)). \] Now, we need to evaluate \( f\left( \frac{\pi}{2} \right) \): \[ f\left( \frac{\pi}{2} \right) = \cos^{-1}(\cos(\pi)) = \cos^{-1}(-1) = 2. \] Thus, \( f\left( \frac{\pi}{2} \right) = 2 \).

Was this answer helpful?
0
0