For $f(x)$ to be continuous at $x = c$, the following condition must hold: \[ \lim_{x \to c^-} f(x) = \lim_{x \to c^+} f(x) = f(c) \] That is, the left-hand limit must equal the right-hand limit at $x = c$. For $x \geq c$, we have $f(x) = 3x + 6$ and for $x < c$, we have $f(x) = x^2 - 3x - 1$. At $x = c$, we need: \[ \lim_{x \to c^-} f(x) = \lim_{x \to c^+} f(x) \] Substituting the functions for the limits: \[ \lim_{x \to c^-} (x^2 - 3x - 1) = \lim_{x \to c^+} (3x + 6) \] \[ c^2 - 3c - 1 = 3c + 6 \] Now, solve for $c$: \[ c^2 - 3c - 1 = 3c + 6 \] \[ c^2 - 6c - 7 = 0 \] Solving this quadratic equation using the quadratic formula: \[ c = \frac{-(-6) \pm \sqrt{(-6)^2 - 4(1)(-7)}}{2(1)} = \frac{6 \pm \sqrt{36 + 28}}{2} = \frac{6 \pm \sqrt{64}}{2} \] \[ c = \frac{6 \pm 8}{2} \] Thus, the two possible values for $c$ are: \[ c = \frac{6 + 8}{2} = 7 \quad \text{or} \quad c = \frac{6 - 8}{2} = -1 \]
The correct option is (C) : \(-1, 7\)