Given:
\[ \lim_{{t \to x}} \frac{10f(x) - 10f(t)}{t^9 - x^9} = 1 \]
By simplifying the numerator and denominator:
\[ \lim_{{t \to x}} \frac{10t^9 f(x) - 10x^9 f(t)}{9x^8} = 1 \]
As \( t \to x \), we get:
\[ 10x^9 f(x) - x^{10} f'(x) = 9x^8 \]
Rearranging terms:
\[ xf'(x) - 10f(x) = -\frac{9}{x^2} \]
This is a linear differential equation of the form:
\[ f'(x) + \frac{10}{x} f(x) = -\frac{9}{x^2} \]
Integrating factor (I.F.):
\[ e^{\int \frac{10}{x}dx} = e^{-10 \ln x} = \frac{1}{x^{10}} \]
Multiplying through by I.F.:
\[ \frac{1}{x^{10}} f(x) = \int \frac{-9}{x^{12}} dx \] \[ \frac{1}{x^{10}} f(x) = \frac{9}{11x^{11}} + C \]
where \( C \) is the constant of integration.
\[ f(x) = \frac{9}{11x} + \frac{C}{x^{10}} \]
Using \( f(1) = 2 \):
\[ 2 = \frac{9}{11} + C \] \[ C = 2 - \frac{9}{11} = \frac{13}{11} \]
Thus, the final function is:
\[ f(x) = \frac{9}{11x} + \frac{13}{11x^{10}} \]
\[ \frac{9}{11x} + \frac{13}{11x^{10}} \]
Let \( f : \mathbb{R} \to \mathbb{R} \) be a twice differentiable function such that \( f(x + y) = f(x) f(y) \) for all \( x, y \in \mathbb{R} \). If \( f'(0) = 4a \) and \( f \) satisfies \( f''(x) - 3a f'(x) - f(x) = 0 \), where \( a > 0 \), then the area of the region R = {(x, y) | 0 \(\leq\) y \(\leq\) f(ax), 0 \(\leq\) x \(\leq\) 2\ is :