We are given the function:
\[ f(x) = \frac{4x + 3}{x + 2} \]
To find \( f^{-1}(-2) \), we need to find the inverse of the function and then substitute \( -2 \) for \( y \).
Let \( y = f(x) = \frac{4x + 3}{x + 2} \).
Now solve for \( x \) in terms of \( y \):
\[ y(x + 2) = 4x + 3 \] \[ yx + 2y = 4x + 3 \] \[ yx - 4x = 3 - 2y \] \[ x(y - 4) = 3 - 2y \] \[ x = \frac{3 - 2y}{y - 4} \]
This is the inverse function:
\[ f^{-1}(y) = \frac{3 - 2y}{y - 4} \]
Now substitute \( y = -2 \) into the inverse function:
\[ f^{-1}(-2) = \frac{3 - 2(-2)}{-2 - 4} = \frac{3 + 4}{-6} = \frac{7}{-6} = \frac{-7}{6} \]
Answer: \( \frac{-7}{6} \)