We are given the function:
\[ f(x) = \frac{4x + 3}{x + 2} \]
To find \( f^{-1}(-2) \), we need to find the inverse of the function and then substitute \( -2 \) for \( y \).
Let \( y = f(x) = \frac{4x + 3}{x + 2} \).
Now solve for \( x \) in terms of \( y \):
\[ y(x + 2) = 4x + 3 \] \[ yx + 2y = 4x + 3 \] \[ yx - 4x = 3 - 2y \] \[ x(y - 4) = 3 - 2y \] \[ x = \frac{3 - 2y}{y - 4} \]
This is the inverse function:
\[ f^{-1}(y) = \frac{3 - 2y}{y - 4} \]
Now substitute \( y = -2 \) into the inverse function:
\[ f^{-1}(-2) = \frac{3 - 2(-2)}{-2 - 4} = \frac{3 + 4}{-6} = \frac{7}{-6} = \frac{-7}{6} \]
Answer: \( \frac{-7}{6} \)
Considering the principal values of the inverse trigonometric functions, $\sin^{-1} \left( \frac{\sqrt{3}}{2} x + \frac{1}{2} \sqrt{1-x^2} \right)$, $-\frac{1}{2}<x<\frac{1}{\sqrt{2}}$, is equal to
The value of $\int_{-1}^{1} \frac{(1 + \sqrt{|x| - x})e^x + (\sqrt{|x| - x})e^{-x}}{e^x + e^{-x}} \, dx$ is equal to
The equation \[ 2 \cos^{-1} x = \sin^{-1} \left( 2 \sqrt{1 - x^2} \right) \] is valid for all values of \(x\) satisfying: