Let f : W \(\to\) W be defined as f(n)=n−1, if is odd and f(n)=n+1, if n is even. Show that f is invertible. Find the inverse of f. Here, W is the set of all whole numbers.
It is given that:
f: W → W is defined as
\(f(n) = \begin{cases} n-1 & \quad \text{if } n \text{ is odd}\\ n+1 & \quad \text{if } n \text{ is even} \end{cases}\)
One-one:
Let f(n) = f(m).
It can be observed that if n is odd and m is even, then we will have n − 1 = m + 1.
⇒ n − m = 2
However, this is impossible.
Similarly, the possibility of n being even and m being odd can also be ignored under a
similar argument.
∴Both n and m must be either odd or even.
Now, if both n and m are odd, then we have:
f(n) = f(m) ⇒ n − 1 = m − 1 ⇒ n = m
Again, if both n and m are even, then we have:
f(n) = f(m) ⇒ n + 1 = m + 1 ⇒ n = m
∴f is one-one.
It is clear that any odd number 2r + 1 in co-domain N is the image of 2r in domain N
and any even number 2r in co-domain N is the image of 2r + 1 in domain N.
∴f is onto.
Hence, f is an invertible function.
Let us define g: W → W as:
\(f(n) = \begin{cases} m+1 & \quad \text{if } m \text{ is even}\\ m-1 & \quad \text{if } m \text{ is odd} \end{cases}\)
Now, when n is odd:
gof(n)=g(f(n))=g(n-1)=n-1+1=n
And, when n is even:
gof(n)=g(f(n))=g(n+1)=n+1-1=n.
Similarly, when m is odd: fog(m)=f(g(m))=f(m-1)=m-1+1=m
When m is even:fog(m)=f(g(m))=f(m+1)=m-1+1=m.
∴ \(gof=I_w \,and \,fog=I_w.\)
Thus, f is invertible and the inverse of f is given by \(f^{-1}=g\) which is the same as f.
Hence, the inverse of f is f itself.
LIST I | LIST II | ||
A. | Range of y=cosec-1x | I. | R-(-1, 1) |
B. | Domain of sec-1x | II. | (0, π) |
C. | Domain of sin-1x | III. | [-1, 1] |
D. | Range of y=cot-1x | IV. | \([\frac{-π}{2},\frac{π}{2}]\)-{0} |
What is the Planning Process?