Step 1: Check the limit as \( (x, y) \to (0, 0) \).
The limit \( \lim_{(x,y) \to (0,0)} f(x,y) \) does not exist because the function behaves differently along different paths to the origin. However, we are asked to evaluate the iterated limits.
Step 2: Compute the iterated limits.
We compute \( \lim_{x \to 0} \left( \lim_{y \to 0} f(x, y) \right) \) and \( \lim_{y \to 0} \left( \lim_{x \to 0} f(x, y) \right) \). - For \( \lim_{y \to 0} f(x, y) \) when \( x \neq 0 \), we get: \[ f(x, 0) = \frac{x^2 + 0^5}{x^2 + 0^4} = 1. \] Thus: \[ \lim_{y \to 0} f(x, y) = 1 \quad \text{for } x \neq 0. \] Now, compute \( \lim_{x \to 0} 1 = 1 \). Thus: \[ \lim_{x \to 0} \left( \lim_{y \to 0} f(x, y) \right) = 1. \] - For \( \lim_{x \to 0} f(x, y) \) when \( y \neq 0 \), we get: \[ f(0, y) = \frac{0^2 + y^5}{0^2 + y^4} = y. \] Thus: \[ \lim_{x \to 0} f(x, y) = y \quad \text{for } y \neq 0. \] Now, compute \( \lim_{y \to 0} y = 0 \). Thus: \[ \lim_{y \to 0} \left( \lim_{x \to 0} f(x, y) \right) = 0. \] Step 3: Conclusion.
The iterated limits exist, as both limit expressions give finite values.
Final Answer: \[ \boxed{\text{The iterated limits } \lim_{x \to 0} \left( \lim_{y \to 0} f(x, y) \right) \text{ and } \lim_{y \to 0} \left( \lim_{x \to 0} f(x, y) \right) \text{ exist.}} \]