To prove:(f+g)oh=foh+goh
consider:((f+g)oh)(x)=(f+g)(h(x))=(foh)(x)+(goh)(x) {(foh)+(goh)(x)}
therefore ((f+g)oh)(x)={(foh)+(goh)(x)} ∀ x ∈ R.
Hence (f+g)oh=foh+goh
To prove:(f.g)oh=(foh).(goh)
consider:((f.g)oh)(x)=(f.g)(h(x))
=(foh)(x).(goh)(x)
={(foh).(goh)}(x)
therefore ((f.g)oh)(x)={(foh).(goh)}(x) ∀ x ∈ R
Hence,(f.g)oh=(foh).(goh)
Let \( A = \{0,1,2,\ldots,9\} \). Let \( R \) be a relation on \( A \) defined by \((x,y) \in R\) if and only if \( |x - y| \) is a multiple of \(3\). Given below are two statements:
Statement I: \( n(R) = 36 \).
Statement II: \( R \) is an equivalence relation.
In the light of the above statements, choose the correct answer from the options given below.