To prove:(f+g)oh=foh+goh
consider:((f+g)oh)(x)=(f+g)(h(x))=(foh)(x)+(goh)(x) {(foh)+(goh)(x)}
therefore ((f+g)oh)(x)={(foh)+(goh)(x)} ∀ x ∈ R.
Hence (f+g)oh=foh+goh
To prove:(f.g)oh=(foh).(goh)
consider:((f.g)oh)(x)=(f.g)(h(x))
=(foh)(x).(goh)(x)
={(foh).(goh)}(x)
therefore ((f.g)oh)(x)={(foh).(goh)}(x) ∀ x ∈ R
Hence,(f.g)oh=(foh).(goh)
LIST I | LIST II | ||
A. | Range of y=cosec-1x | I. | R-(-1, 1) |
B. | Domain of sec-1x | II. | (0, π) |
C. | Domain of sin-1x | III. | [-1, 1] |
D. | Range of y=cot-1x | IV. | \([\frac{-π}{2},\frac{π}{2}]\)-{0} |
What is the Planning Process?