Step 1: Apply the chain rule.
We are tasked with differentiating \( \sqrt{[f(x)]^2 + [g(x)]^2} \). Using the chain rule:
\[
\frac{d}{dx}\left( \sqrt{[f(x)]^2 + [g(x)]^2} \right) = \frac{1}{2\sqrt{[f(x)]^2 + [g(x)]^2}} \cdot \left( 2f(x)f'(x) + 2g(x)g'(x) \right)
\]
Simplifying:
\[
\frac{d}{dx} = \frac{f(x)f'(x) + g(x)g'(x)}{\sqrt{[f(x)]^2 + [g(x)]^2}}
\]
Step 2: Substitute the given values.
At \( x = 1 \), we have \( f(1) = 3 \), \( f'(1) = -\frac{1}{3} \), \( g(1) = -4 \), and \( g'(1) = -\frac{8}{3} \).
Substituting these values into the formula:
\[
\frac{3 \times \left(-\frac{1}{3}\right) + (-4) \times \left(-\frac{8}{3}\right)}{\sqrt{3^2 + (-4)^2}} = \frac{-1 + \frac{32}{3}}{\sqrt{9 + 16}} = \frac{-1 + \frac{32}{3}}{5} = \frac{-\frac{3}{3} + \frac{32}{3}}{5} = \frac{29}{15} \cdot \frac{1}{5} = \frac{-29}{25}
\]
Step 3: Conclude.
Thus, the correct answer is \( \frac{-29}{25} \).
Final Answer: \[ \boxed{\frac{-29}{25}} \]
Solve the following assignment problem for minimization :
Find x if the cost of living index is 150 :