Question:

Let [𝑑] denote the greatest integer ≀ 𝑑. The number of points of discontinuity of the function 𝑓(π‘₯)= [π‘₯2βˆ’3π‘₯+2] for π‘₯∈[0, 4] is _______ (in integer)

Updated On: Nov 18, 2025
Hide Solution
collegedunia
Verified By Collegedunia

Correct Answer: 10 - 8

Solution and Explanation

Given:
\[ f(x)=\lfloor x^2-3x+2\rfloor,\qquad x\in[0,4], \] where $\lfloor t\rfloor$ is the greatest integer $\le t$. $f$ is discontinuous exactly at points where the argument is an integer, i.e. where \[ g(x):=x^2-3x+2 \in \mathbb{Z}. \] 
Step 1 β€” Range of $g$ on $[0,4]$ 
The quadratic $g(x)=x^2-3x+2$ has vertex at $x=\tfrac{3}{2}$, and \[ g\Big(\tfrac{3}{2}\Big)=\tfrac{1}{4},\qquad g(0)=2,\qquad g(4)=6. \] So on $[0,4]$ we have $g(x)\in\big[\tfrac{1}{4},6\big]$. The integers $n$ that can be attained are $n=1,2,3,4,5,6$. 
Step 2 β€” Solve $g(x)=n$ for each integer $n$ and count roots in $[0,4]$
Solve $x^2-3x+(2-n)=0$. For each $n$:

  • $n=1$: $x^2-3x+1=0$. Roots $x=\dfrac{3\pm\sqrt5}{2}\approx 0.382,\;2.618$  β†’ both in $[0,4]$  β†’ 2 points.
  • $n=2$: $x^2-3x=0$. Roots $x=0,\;3$  β†’ both in $[0,4]$  β†’ 2 points.
  • $n=3$: $x^2-3x-1=0$. Roots $x\approx -0.303,\;3.303$  β†’ only $3.303\in[0,4]$  β†’ 1 point.
  • $n=4$: $x^2-3x-2=0$. Roots $x\approx -0.561,\;3.562$  β†’ only $3.562\in[0,4]$  β†’ 1 point.
  • $n=5$: $x^2-3x-3=0$. Roots $x\approx -0.792,\;3.792$  β†’ only $3.792\in[0,4]$  β†’ 1 point.
  • $n=6$: $x^2-3x-4=0$. Roots $x=-1,\;4$  β†’ only $x=4\in[0,4]$  β†’ 1 point.

Count them up: $2+2+1+1+1+1 = 8$. 
Conclusion:
The number of points of discontinuity of $f$ on $[0,4]$ is \[ \boxed{8}. \]

Was this answer helpful?
1
0

Questions Asked in IIT JAM EN exam

View More Questions