
Use the formula for area of a triangle: \[ \text{Area} = \frac{1}{2} \times \text{side}_1 \times \text{side}_2 \times \sin(\text{included angle}) \] So, \[ \text{Area of } \triangle ADE = \frac{1}{2} \times AD \times AE \times \sin A \] Substituting values: \[ = \frac{1}{2} \times 2x \times 2y \times \sin A = 8 \] \[ \Rightarrow 2x \cdot 2y \cdot \frac{1}{2} \cdot \sin A = 8 \Rightarrow 2xy \cdot \sin A = 8 \Rightarrow xy \cdot \sin A = 4 \tag{1} \]
Again using the area formula: \[ \text{Area of } \triangle ABC = \frac{1}{2} \times AB \times AC \times \sin A \] Substituting values: \[ = \frac{1}{2} \times 3x \times 5y \times \sin A = \frac{15}{2} \cdot xy \cdot \sin A \] From equation (1), substitute \( xy \cdot \sin A = 4 \): \[ \text{Area} = \frac{15}{2} \cdot 4 = 30 \]
∴ Area of triangle \( ABC = 30 \)
In the given figure, the numbers associated with the rectangle, triangle, and ellipse are 1, 2, and 3, respectively. Which one among the given options is the most appropriate combination of \( P \), \( Q \), and \( R \)?

The center of a circle $ C $ is at the center of the ellipse $ E: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 $, where $ a>b $. Let $ C $ pass through the foci $ F_1 $ and $ F_2 $ of $ E $ such that the circle $ C $ and the ellipse $ E $ intersect at four points. Let $ P $ be one of these four points. If the area of the triangle $ PF_1F_2 $ is 30 and the length of the major axis of $ E $ is 17, then the distance between the foci of $ E $ is: