Area of \(ΔADE=\frac{1}{2}\times AD\times AE\times sinA\)
\(=\frac{1}{2}\times 2x\times 2y\times SinA=8\)
\(⇒ xy SinA=4\)
The area of triangle ABC is now calculated as \(\frac{1}{2}\times AB\times A\times sinA\)
\(=\frac{1}{2}\times 3x\times 5y\times sinA\)
\(⇒\frac{15}{2}xy\space sinA=\frac{15}{4}\times4=30\)
\(∴\) Area of \(ABC = 30\)