Let \( a \in \mathbb{R} \). If \( f(x) = \begin{cases} (x + a)^2, & x \leq 0 \\ (x + a)^3, & x > 0 \end{cases} \), then
Given function:
$$f(x) = \begin{cases} (x+a)^2, & x \leq 0 \ (x+a)^3, & x > 0 \end{cases}$$
Finding conditions for $\frac{d^2f}{dx^2}$ to exist at $x = 0$:
For the second derivative to exist at $x = 0$, the function must be twice differentiable at $x = 0$, which requires:
Step 1: Check continuity of $f$ at $x = 0$
$$\lim_{x \to 0^-} f(x) = a^2, \quad \lim_{x \to 0^+} f(x) = a^3, \quad f(0) = a^2$$
For continuity: $a^2 = a^3 \Rightarrow a^2(1-a) = 0 \Rightarrow a = 0$ or $a = 1$
Step 2: Find $f'(x)$
For $x < 0$: $f'(x) = 2(x+a)$
For $x > 0$: $f'(x) = 3(x+a)^2$
Step 3: Check continuity of $f'$ at $x = 0$
$$\lim_{x \to 0^-} f'(x) = 2a, \quad \lim_{x \to 0^+} f'(x) = 3a^2$$
For $f'$ to be continuous: $2a = 3a^2 \Rightarrow 2a - 3a^2 = 0 \Rightarrow a(2-3a) = 0$
So $a = 0$ or $a = \frac{2}{3}$
Step 4: Combining conditions
From Step 1: $a \in {0, 1}$
From Step 3: $a \in {0, \frac{2}{3}}$
Common value: $a = 0$
Step 5: Verify $f''$ exists at $x = 0$ when $a = 0$
For $a = 0$:
At $x = 0$: $$\lim_{x \to 0^-} f''(x) = 2, \quad \lim_{x \to 0^+} f''(x) = 0$$
Since $2 \neq 0$, the second derivative does not exist at $x = 0$ even when $a = 0$.
Answer: (A) $\frac{d^2f}{dx^2}$ does not exist at $x = 0$ for any value of $a$