- The Fourier transform of a discrete-time signal \( x(n) \) is obtained by substituting \( z = e^{j\omega} \) in its Z-transform.
- Given \( X(z) = \frac{1}{1+2 z^{-1}} \), substituting \( z = e^{j\omega} \) gives \[ X(e^{j\omega}) = \frac{1}{1+2 e^{-j\omega}} \] Conclusion: The correct answer is option (c).
Signals and their Fourier Transforms are given in the table below. Match LIST-I with LIST-II and choose the correct answer.
| LIST-I | LIST-II |
|---|---|
| A. \( e^{-at}u(t), a>0 \) | I. \( \pi[\delta(\omega - \omega_0) + \delta(\omega + \omega_0)] \) |
| B. \( \cos \omega_0 t \) | II. \( \frac{1}{j\omega + a} \) |
| C. \( \sin \omega_0 t \) | III. \( \frac{1}{(j\omega + a)^2} \) |
| D. \( te^{-at}u(t), a>0 \) | IV. \( -j\pi[\delta(\omega - \omega_0) - \delta(\omega + \omega_0)] \) |