Given \( a + b + c = 0 \), take reciprocal:
\[
\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = \frac{ab + bc + ca}{abc}
\]
Now since \(a + b + c = 0 \Rightarrow (a + b + c)^2 = 0 \Rightarrow a^2 + b^2 + c^2 + 2(ab + bc + ca) = 0\)
Since \( |a| = |b| = |c| = 1 \Rightarrow a^2 + b^2 + c^2 \in \mathbb{C} \), but more importantly:
We get \( ab + bc + ca = -\frac{1}{2}(a^2 + b^2 + c^2) \)
Thus numerator becomes zero, and so:
\[
\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = 0
\]