Question:

Let a continuous random variable $X$ follow Normal distribution with mean $\mu$ and variance $\sigma^2$. Let $Z = \dfrac{X - \mu}{\sigma}$. If $P(Z>Z_1) = 0.12$ and $P(Z>Z_2) = 0.76$, then $P(Z_2<Z<Z_1) =$

Show Hint

Use the complement rule and properties of standard normal distribution: \(P(a<Z<b) = P(Z<b) - P(Z<a)\).
Updated On: May 26, 2025
  • 0.88
  • 0.64
  • 0.38
  • 0.62
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

We have a continuous random variable $X$ following a Normal distribution with mean $\mu$ and variance $\sigma^2$. The variable $Z = \dfrac{X - \mu}{\sigma}$ follows a standard normal distribution, i.e., $Z \sim N(0,1)$. We are given:
  • $P(Z>Z_1) = 0.12$
  • $P(Z>Z_2) = 0.76$
We need to find $P(Z_2<Z<Z_1)$.
Step 1: Find $P(Z<Z_1)$. Given $P(Z>Z_1) = 0.12$, using the standard normal property $P(Z<Z_1) = 1 - P(Z>Z_1) = 1 - 0.12 = 0.88$.
Step 2: Find $P(Z<Z_2)$. Given $P(Z>Z_2) = 0.76$, thus $P(Z<Z_2) = 1 - 0.76 = 0.24$.
Step 3: Calculate $P(Z_2<Z<Z_1)$. Use the result of the subtracted probabilities: $P(Z_2<Z<Z_1) = P(Z<Z_1) - P(Z<Z_2) = 0.88 - 0.24 = 0.64$.
Therefore, the probability $P(Z_2<Z<Z_1)$ is $\boxed{0.64}$.
Was this answer helpful?
0
0

Top Questions on Probability

View More Questions