Since \( A + A^{T} = O \), the matrix \( A \) is skew-symmetric.
For a skew-symmetric matrix of odd order,
\[
\det(A) = 0.
\]
Step 1: Determinant of \( A+I \).
Since \( \det(A)=0 \) and \( A \) is skew-symmetric of order 3,
\[
\det(A+I) = 1.
\]
Step 2: Determinant of adjoint.
For an \( n \times n \) matrix \( M \),
\[
\det(\operatorname{adj}(M)) = (\det M)^{n-1}.
\]
Here \( n = 3 \), hence
\[
\det(\operatorname{adj}(A+I)) = (\det(A+I))^{2} = 1.
\]
Step 3: Scalar multiplication inside adjoint.
For a \( 3 \times 3 \) matrix,
\[
\operatorname{adj}(2M) = 2^{2}\operatorname{adj}(M).
\]
Therefore,
\[
\det(\operatorname{adj}(2\,\operatorname{adj}(A+I)))
= 2^{6}\det(\operatorname{adj}(\operatorname{adj}(A+I))).
\]
Step 4: Adjoint of adjoint.
\[
\det(\operatorname{adj}(\operatorname{adj}(M))) = (\det M)^{(n-1)^{2}}.
\]
Thus,
\[
\det(\operatorname{adj}(\operatorname{adj}(A+I))) = 1.
\]
Hence,
\[
\det(\operatorname{adj}(2\,\operatorname{adj}(A+I))) = 2^{6}.
\]
Comparing with \( 2^{\alpha} 3^{\beta} 11^{\gamma} \), we get
\[
\alpha = 6,\quad \beta = 0,\quad \gamma = 0.
\]
Final Answer:
\[
\boxed{6}
\]