The formula for the interior angle of a regular polygon is given by \(180−\frac{360}{n}\), where ‘\(n\)’ represents the number of sides.
\(⇒180−\frac{360}{2a}=\frac{3}{2}(180−360a)\)
\(⇒360−360a=540−3×360a\)
\(⇒2×360a=180\)
\(⇒a=\frac{2×360}{180}\)
\(⇒a=4\) and \(b=2a=8\)
Therefore, a polygon with each side equal to \(a+b=4+8=12\) will have each interior angle equal to \(180−\frac{360}{12}=150. \)