Let \(P(A) = p\), \(P(B) = q\). Since \(A\) and \(B\) are independent,
\[
P(A \cap B) = pq = \frac{1}{6} \tag{1}
\]
Also, the probability that neither occurs is:
\[
P(A^c \cap B^c) = (1 - p)(1 - q) = \frac{1}{3} \tag{2}
\]
Let’s solve equations (1) and (2):
From (1): \(q = \frac{1}{6p}\)
Substitute in (2):
\[
(1 - p)\left(1 - \frac{1}{6p}\right) = \frac{1}{3}
\Rightarrow (1 - p)\left(\frac{6p - 1}{6p}\right) = \frac{1}{3}
\Rightarrow \frac{(1 - p)(6p - 1)}{6p} = \frac{1}{3}
\]
Multiply both sides by \(6p\):
\[
(1 - p)(6p - 1) = 2p
\Rightarrow 6p - 1 - 6p^2 + p = 2p
\Rightarrow -6p^2 + 5p - 1 = 2p
\Rightarrow -6p^2 + 3p - 1 = 0
\Rightarrow 6p^2 - 3p + 1 = 0
\]
Solving the quadratic:
\[
p = \frac{3 \pm \sqrt{(-3)^2 - 4 \cdot 6 \cdot 1}}{2 \cdot 6}
= \frac{3 \pm \sqrt{9 - 24}}{12}
= \frac{3 \pm \sqrt{-15}}{12}
\]
Oops! This gives complex roots. Let's recheck our algebra.
Rewriting equation (2):
\[
(1 - p)(1 - \frac{1}{6p}) = \frac{1}{3}
\Rightarrow 1 - \frac{1}{6p} - p + \frac{p}{6p} = \frac{1}{3}
\Rightarrow 1 - \frac{1}{6p} - p + \frac{1}{6} = \frac{1}{3}
\Rightarrow \left(1 + \frac{1}{6} - p - \frac{1}{6p}\right) = \frac{1}{3}
\Rightarrow \frac{7}{6} - p - \frac{1}{6p} = \frac{1}{3}
\]
Now:
\[
\frac{7}{6} - \frac{1}{3} = p + \frac{1}{6p}
\Rightarrow \frac{5}{6} = p + \frac{1}{6p}
\]
Multiply both sides by \(6p\):
\[
5p = 6p^2 + 1
\Rightarrow 6p^2 - 5p + 1 = 0
\]
Now solve:
\[
p = \frac{5 \pm \sqrt{25 - 24}}{12}
= \frac{5 \pm 1}{12}
\Rightarrow p = \frac{6}{12} = \frac{1}{2}, \quad p = \frac{4}{12} = \frac{1}{3}
\]
Hence,
\[
P(A) = \frac{1}{2} \text{ or } \frac{1}{3}
\]